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Abstract

Artificial neural networks apply a nonlinear activation function to all
numbers in a given layer of neurons, represented by a tensor, before the
affine transformation in the next layer. By alternating nonlinear and linear
functions, they introduce nonlinearity into what otherwise would be only
a linear regression model. This project proposes a new activation func-
tion for convolutional neural networks (CNNs) to better balance training
speed and classification accuracy than three of the currently-used func-
tions. The new function was tested to classify images of handwritten digits
in the MNIST dataset. The general structure of the CNN emulates that
of Karpathy’s ConvNetJS demo. I coded this entire convolutional neural
network in Python using only NumPy’s array functionality without the
aid of machine learning libraries. Four different activation functions were
compared. The rectified linear unit (ReLU), maz(0, z), computes quickly
but has derivative zero over negative numbers. The softplus function,
In(1+ €®), approximates ReLU and, although less efficient, has a positive
gradient everywhere. The logistic function, 1/(1+e~%), produces less ac-
curate results than ReLU and was mainly included to test the validity of
this experiment. I hypothesized that the new function, (z + v1 + 22)/2,
which resembles softplus, would have a comparable accuracy to the same
while computing more quickly. Twelve CNNs, three using each activation
function, were trained on MNIST for 50 epochs using the ADADELTA
adaptive rate method. This took 25.9 hours of IGPU time. Although
slightly less accurate than the others, the new function, as hypothesized,
ran faster than all but ReL.U.

1 Introduction

1.1 What is a neural network?

Artificial neural networks (ANNs) are mathematical models meant to mimic
the processes of neurons manipulating data in the brains of humans and other



animals. They have shown use in a wide variety of tasks, from voice recognition
to self-driving cars to generation of realistic images of human faces. There are
many types of ANNSs specialized for different problems, but virtually all of them
perform regression analysis; given a set of inputs and outputs, the network needs
to “learn” to produce the given outputs when fed the given inputs.

It is able to tweak the results it produces using various free parameters. In
linear regression, for example, in order to produce a desired y given some =,
it has the freedom to adjust the slope m and y-intercept b of the fitting line,
y = mz+b. The free parameters of an ANN are analogous to m and b, but ANNs
operate on vectors, matrices, or higher-dimensional tensors, not just individual
numbers. Additionally, to write the full equation expressing the output in terms
of the input and free parameters would be cumbersome in most cases.

As in linear regression, an ANN defines the “best fit” as the set of free
parameters which minimizes some error - the difference between the expected
output y and the output of the model y. Linear regression usually defines
the error as the sum of squared differences between y and g, but ANNs have
other options as well. The main difference, though, lies in how the optimal free
parameters are found. In linear regression with least-squares error, there is an
equation which will simply return the best values of m and . In ANNs, on
the other hand, the process is not so simple and will be discussed later under
"Backpropagation".

1.2 Making a prediction

Before backpropagation, though, we must first understand forward propagation,
the process the network uses to output a g given an X. This project uses
a convolutional neural network (CNN), but in order to fully grasp its inner
workings, one should look at a simpler type of ANN, a fully-connected neural
network.

Fully-connected ANNS, like animal brains, are made of neurons, which store
information, and synapses, which relay signals between neurons. Each neuron
has an activation, the strength of the signal it emits, and each synapse has a
weight, the factor by which it dampens, amplifies, or even inverts the signal it
carries. Both activations and weights are real numbers.

Neurons are grouped into layers: an input layer to store X, some number of
hidden layers to act as intermediate stages, and an output layer for . Because
every neuron stores a real number, every layer stores a vector whose number
of components equals the number of neurons in that layer. The activations of
the input layer are set according to the components of the vector X, and the
data move through the hidden layers to the output layer. (These components
are usually normalized to put them in or near the range [0, 1|, especially for
large numbers like years. Because the this project’s problem does not require
normalization, though, it will not be discussed here.)



1.3 A specific example

The iris dataset is a sample of 150 irises collected by biologist Edgar Anderson
in the mid-1930s. For each iris, the dataset contains measurements of its sepal
length, sepal width, petal length, petal width, and classification into one of three
species, Setosa, Virginica, or Versicolor. The goal of the network trained on this
dataset is to identify a flower based on its dimensions. The input layer would
thus have four neurons, one for each measurement. How many neurons should
the output layer have, though?

1.3.1 Formatting output with softmax

In a “normal” regression problem, where the network would need to output not
a choice but some number of independent traits, the output layer would be
fairly straightforward. If the network were to predict the height of the stem and
depth of the roots from the four characteristics above, there would need to be
two output neurons, one for each output trait.

It takes a bit more thought to arrive at a good way to represent solutions to a
classification problem. For a start, the output layer might need just one neuron.
If every species were assigned a number - say, 0 for Setosa, 1 for Virginica, and
2 for Versicolor - the output could be interpreted as the number to which it
is closest. There are two main issues with this approach, however. The first is
inherent bias against classifying as the central number. Setosa and Versicolor
would be classified for any output in the infinite ranges (—o0, 0.5) and (1.5, 00),
respectively, but the network would need to hit (0.5,1.5) in order to output
Virginica. The second is that a one-dimensional output does not capture all
types of uncertainty between three choices. For example, what if a certain
flower looked somewhere in between a Setosa and a Versicolor? The output
should be between the two corresponding ranges, but that would put it right in
the Virginica range, even if the input looked nothing like the latter.

What we need instead is for the network to return three probabilities, each
representing the confidence that the flower is of one species. How can we ensure
that the numbers meet the definition of “probabilities,” i.e. they are nonnegative
and sum to 1?7 A normal “regression-type” network can return any three real
numbers in the output layer.

Enter the softmax function o. It meets both of the above requirements
in turn, first by taking the exponential of each number to ensure positivity,
then by dividing each by the sum of all exponentials to reach a sum of 1. In
mathematical notation, applying softmax to a vector v with n components,

ov); = e/ Y e

1.4 Forward propagation

The names used in this paper for all variables will be:
Input activations: X



Weight matrix: W
Bias vector: b
Pre-activation state: z
Activation function: f
Activation state: a
Output activations: ¢
Expected output: y
Error: J
Some of these variables have multiple instances in a single network and will
be indexed by a superscripted number in parentheses (e.g. the first weight ma-
trix is W),

To summarize the process of one layer, every neuron in a given layer (except
for the output layer) is connected to every other neuron in the next layer by a
weight, making the network “fully-connected”. Each weight takes the activation
of the neuron at its input, multiplies the activation by its strength, and feeds
the result into the neuron at its output. The neurons in the next layer take
all of the numbers that the weights feed it and add them, along with one more
value, called a bias b. This paper will call this sum the pre-activation state of
the neuron. (Although it may be called by other names, if such names exist, the
researcher was unable to find them.) Each neuron then applies an activation
function to the pre-activation state to get the activation of the neuron in the
next layer.

The network to classify irises consists of three layers: an input layer with
four neurons, one hidden layer with five, and an output layer with three. (Neural
networks often have multiple hidden layers, and those which do are called deep
networks. The CNN in this project is deep.) X is the activation of the input
layer (or, equivalently, the first layer a(l)). Because the next layer has five
neurons, the weights of the synapses between them W) are represented as a
4-by-5 matrix.

The pre-activation states of the hidden layer z(?) are determined by X, W),
a?d the bias b(1). Let’s look at the pre-activation of a particular hidden neur?r)l,

2 2

z; ). For every neuron in X X;, there is a synapse Wi(jl) connecting it to z;

The weight of this synapse multiplied by the activation X; is added to z§2) for
all 4, along with the corresponding bias b;l). Altogether,
2 1 1
ZJ( ) = Zz(Xlwz(j )) + b§ )
for all j. The sum term is that of pairwise products, with X; for all 7+ making
up a row vector and Wi(jl) for all ¢ making a column of the matrix. This sum of

pairwise products is the same as a dot product, and the dot product of a row
and a column is exactly the process of matrix multiplication:

22) = xw@ L pM)

This is an affine transformation - a linear transformation (represented by ma-
trix multiplication) followed by a translation (when the bias is added). Skipping



the activation function would be no better than having just one network layer
because composing linear functions alone results only in another linear func-
tion. The activation function is applied to each element individually in order
to introduce nonlinearity into the regression model and to give neural networks
their power:

a® = f(z(?)

1.4.1 Choosing an activation function

The earliest neural networks used perceptrons, neurons whose activation function
was 0 if x < 0 and 1 otherwise. The problem with these neurons was that
the function is discontinuous, so making small changes to weights could have
unpredictable effects. It was soon replaced with a smoother variant, the logistic
function, a sigmoid or S-shaped curve with the equation

flx)=1/(1+e™™)
The logistic function was the go-to for neural networks until 2011, when a new
function was shown to outperform it while being much easier to calculate. This
function is the rectified linear unit, or ReL U, defined as

f(x) = maxz(0,x), or equivalently, 0 if < 0 and x otherwise.

The same paper also proposed a smooth approximation to ReLU, the softplus
function, with equation

f(z) =in(e” +1).
The author of the paper noted that ReLU’s ability to easily return an activation
of 0 was more biologically accurate than previous functions, as relatively few
neurons are firing in a human brain at any moment. (This sparsity does not,
however, support to any degree the myth that we only use ten percent of our
brains, because virtually all neurons are used over longer periods.)

1.5 Forward propagation (cont.)
To restate the two equations of the iris network involved in forward propagation
so far,
22— xw® 4 pM)
a® = f(Z(Q))
f could be any of the activation functions mentioned. To get the pre-activation

states of the neurons in the output layer, another affine transformation is needed
with new free parameters:

2B3) = @ W®) L p2)
Finally, the softmax function is applied to give a classification:
§=0(=)

These four equations encapsulate the full “y = max + b’ for this network. The
question remains, though: How do we find the free parameters?



1.6 Backpropagation

Neural networks learn via gradient descent, a technique used to find local minima
of a function, and they apply it to find a minimum of error J. Gradient descent
begins by setting the free parameters randomly and then incrementally changes
them to decrease the output of the function being minimized. To know whether
to tune each parameter up or down, and by how much, gradient descent needs
the partial derivatives of J, one with respect to each free parameter. The chal-
lenge of training a neural network lies in finding these partial derivatives, and
the algorithm which does so is called backward propagation, backpropagation,
or backprop.

To begin, we need to define J. A method often used to compare two proba-
bility distributions is the cross entropy between them,

J=- Zz yzln(ﬁgz)

Neural networks are essentially a large nested function from input to output,
and taking the derivative of such a function requires repeated application of the
Chain Rule. Our goal for this network is to find

so that we can modify each of the free parameters to decrease J and thus improve
the network’s accuracy. The equation for J, though, doesn’t depend directly on
any of these free parameters, but it does depend on g, which in turn depends
indirectly on all of the weights and biases. Let’s begin by finding %7 which
will have the same shape as ¢ itself. Because each element of ¢, y; appears in
only one term of the sum, the i-th term, when taking %, we need only focus

on the i-th term because everything else is considered constant. d;i]yiln(gi) is,
by the derivative of the natural logarithm and the constant multiple rule, y; /9;.

Applying this for all 7 and remembering the negative sign,
oJ
oy

_Y
Y

with division being performed elementwise. The equation for ¢ depends only on
23), to which the softmax function is applied. Taking the derivative here and
applying the Chain Rule to find % is tricky because changing one element of
23) will affect all elements of . To learn more about the derivative of softmax,
see “The Softmax Function and its Derivative.”

Instead, let’s assume we know % and try to find the gradients we need,
% and %. Because b(?) is simply added to z® with no other processing,
its derivative is the same as that of %'

oJ  0J
b2 T 92(3)

One can think of it as that whether some value is added to z(®) directly or the
same value is added to b?) and then forward-propagates to affect z(3), the change



oJ
da(®
, which feeds all elements of z(*) through W (). a§2)’s influence on
(2)

%

in J from the operation will be the same. To find
2

i

look at a particular

element a

J through some ZJ(S) is equal to 67;](»3)/ 8@22) = Wi(f) times 82;2)3,. However, a

influences J through all elements of 2(®), so its cumulative effect is the sum of
all of these: 57 07
2
> Wy

aaz(-Q) - 7 82](-3)

This sum is the dot product of a row (the gradients of z(*)) and another row
(the i-th row of W), To simplify the equation and write it in terms of matrix
multiplication, this can be turned into the dot product of a row and a column
by transposing W?):
oJ oJ T
i (2
9a® ~ 2"

a® does not depend directly on any free parameters, but it depends on 22,

which depends on W and b in turn. Thus, to find % and %, we must
first find 8‘2{2). al(-Q) = f(zi(z)) for all 4, so dal(-Z)/dzl@ = f’(zl-(z)). By the Chain

Rule,
2
0J _ 9J dal® _ 0J ()
822(2) 8a§2) dzi(2) da'? ’

Stated without indices,

7

oJ oJ

2
920 ~ g ° )

where o denotes the elementwise product or Hadamard product (as opposed
to the dot product or matrix product). The equations for % and % are
virtually the same as those for % and % after replacing z® with z(?) and

a® with X, essentially shifting everything back one layer.

1.6.1 For CNNs

In a fully-connected ANN like the one just discussed, the pre-activation states
are decided as a sum of products of weights and activations of the previous layer,
all of these being real numbers. In a convolutional network, however, neurons do
not store real numbers but images, matrices of pixel values. Every layer is thus
not a vector, as in a fully-connected network, but a three-dimensional tensor
(a vector of matrices). Similarly, synapses do not store individual numbers but
kernels, small matrices (5x5 in this project). This makes every array storing
them four-dimensional - two numbers to index which neurons are connected
(as before) and two to index a particular pixel within the matrix. Instead of
multiplying activations with weights, images and kernels are convoluted and
then added to get the pre-activation values in the next layer. Kernels can define



“filters” on the image or detect particular features. For example, a 3-by-3 kernel
which blurs the image with which it is convoluted is

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

by averaging the values of the 9 neighbors of every pixel. Additionally, after
applying the activation function, an extra step of pooling is required, which
scales the image down so that large-scale features can be detected. Convolutions
have a receptive field only as big as the matrices themselves, so to be able to
distinguish things like loops or stems in the context of digit recognition, the
image must be scaled down so that the convolutional kernel covers a wider area
of the image.

In CNNs, a bit of symmetry which exists in fully-connected networks is
broken in that forward- and backpropagation do not both use convolution like
fully-connected ANNs use matrix multiplication both ways. Instead, backpropa-
gation in CNNs relies on correlation, which rotates the kernel 180 degrees before
convoluting. Backpropagation for pooling is performed by scaling up the images
of the gradients of a post-pooling layer.

2 Question and hypothesis
How does the new activation function

T+ vVaz+1

fla) =

compare to the ReLU, softplus, and logistic functions in terms of training ef-
ficiency and classification accuracy when used in a CNN to recognize digits in
MNIST?

4 —— New /|
ReLU

sl — Softplus ||
Logistic




It should run faster than softplus and logistic for two reasons. First, it
does not involve logarithms or exponentials, which are computationally intensive
compared to square roots. The logistic function, though, is the solution to the
differential equation

f'(@) = f(2)(1 = f(2)),

making its derivative, which is necessary for backpropagation, quick to com-
pute, given that f(x) is already known. The new function, however, solves a
differential equation too,

f'(@) = f()/2f (x) — x)

keeping its total computation time ahead of softplus.

Also, because it looks similar to softplus, their accuracy should be roughly
similar. As noted before, previous research has demonstrated that ReLLU should
improve upon sigmoids like the logistic function, so the latter was included to
test the validity of the experiment.

3 Materials and Methods

The network was implemented in Python and did not use any machine learn-
ing libraries for forward or backpropagation. All of the math was implemented
with NumPy’s array functions, including but not limited to matrix multiplica-
tion for fully-connected layers, Einstein summation for convolutional layers, and
Kronecker multiplication for pooling layers.

The network’s input layer is a NumPy array with shape (24, 24, 1, 20),
representing the 24-by-24 pixel input image accepted, the existence of only 1
image (neuron) in that layer, and the network’s batch size of 20. The first weight
tensor has shape (5, 5, 1, 8), with 5-by-5 kernels connecting the single input
image to each of the eight hidden neurons. Because this changes neither the
image dimension nor the batch size, the first hidden layer consists of a (24, 24,
8, 20) array, to which f is applied. This layer is then average-pooled by a factor
of 2 to get a (12, 12, 8, 20) array. The next operation is another convolution
with (5, 5, 8, 16) weights to reach a (12, 12, 16, 20) hidden layer, followed by
another activation and then a pooling by 3. The pooled layer, with a shape of
(4, 4, 16, 20), has each of its 256 pixels (per example) connected by a (256, 10)
weight matrix to each neuron in the output (10, 20).

Twelve instances of the network were initialized, three with each of the four
activation functions, and they were trained one by one on an Intel Core i5
processor with an HD Graphics 530 integrated GPU. Each was trained for 50
epochs of the MNIST training data, recording its accuracy on the testing data
after each epoch. The total training time was measured for each network as
well.



4 Results
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The above graph depicts the performance of the networks over time, measured
by the percent of testing images classified incorrectly after each epoch. The
scatterplots represent the three trials, and the lines graph the average error for
each function.

Surprisingly, the logistic function achieved the highest accuracy out of all
four. The new function with C=1 achieved approximately the same accuracy
as ReLLU. However, setting C to 0.1 or 0.01 improved the new function, putting
it on par with softplus.
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The proposed function beat all but ReLU in terms of training speed on MNIST.
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5 Conclusion and Discussion

The relatively small time difference between trials reflects the fact that most of
the training time is spent calculating the convolutions. The number of convo-
lutions per layer increases proportionally to the square of the neurons in each
layer, whereas the number of activations only grows linearly.

Nonetheless, the new function presented some advantage over each of the
three functions for C=0.1 and C=0.01: an accuracy advantage over ReLU and
a speed advantage over softplus and logistic. This makes it potentially useful
for neural networks.

I propose to name this function the hyperbolic rectifier unit or HRU, because
its graph is that of a hyperbola, and its asymptotes, y = 0 and y = x, are the
two lines which define ReLU. The HRU could be tested on other problems or
against other activation functions, like the arctangent, hyperbolic tangent, or
exponential linear unit (ELU).
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