
What is a Neural Network?

A neural network is a regression model which “learns” to provide some
output given some input. A simple regression model is the linear equation
y = mx + b, which gives an output y based on an input x using the free
parameters m and b. The regression analysis problem consists of finding
the values of m and b which return the desired output when given the
input. Likewise, neural networks have inputs, outputs, and free param-
eters, but these take the form of tensors - vectors, matrices, and 3- or
higher-dimensional arrays of numbers.



Forward Propagation

A neural network consists of neurons which send signals through synapses.
Each neuron has an activation representing the strength of the signal it
emits, and each synapse has a weight representing how it modifies the
signal it carries. Neurons are grouped into layers. The prediction process
begins by manually setting the activations of the first layer X . The acti-
vations of the second layer a(2) are calculated using the first weights W (1),
additional values called the bias b(1), and the activation function f :

a(2) = f (z(2))

where
z(2) = XW (1) + b(1)

This process is repeated to find the activations of the next layers. The
activations of the last layer ŷ represent the output of the network.



Backpropagation

Neural networks learn by finding the W and b matrices which, when given an input
X , provide the output ŷ which closely matches the expected output y. The network
calculates an error J to quantify how well the model fits the data. In this problem, J
is the cross entropy between y and ŷ:

J =
∑
i

(yi · ln(ŷi))

J is minimized through gradient descent. Gradient descent initializes the free parame-
ters randomly, then finds the partial derivative of J with respect to each free parameter
to ascertain how changing each parameter will affect J . The value of ∂J/∂ŷ = −y/ŷ
and the Chain Rule are used to find the derivatives with respect to the previous layers’
activations. For example, once ∂J/∂a(2) is found, we can calculate

∂J

∂W (1)
= XT · ( ∂J

∂a(2)
◦ f ′(z(2)))

This result is used to adjust the values inside W (1) so that J decreases, making ŷ closer to
y. By making many incremental adjustments, the error J approaches a local minimum.



Convolutions

Matrix multiplication is performed by adding products of pairs of num-
bers and is used by fully-connected neural networks, whose neurons and
weights each store one real number. In convolutional neural networks
(CNNs), however, each neuron stores an image, a matrix of pixel values,
and each synapse stores a kernel, a smaller matrix defining a “filter” on
the image. Instead of multiplying the activations and weights for forward
propagation, the images and kernels are convoluted, applying the filter
to the image. Convolution can emulate the filters of blurring, sharpen-
ing, edge detection, exposure adjustment, etc., which are useful for image
processing and feature recognition.

While backpropagation in fully-connected networks uses matrix multi-
plication just as in forward propagation, CNNs use correlation in back-
propagation, which is equivalent to rotating the kernel by 180 degrees
before convolution.



Why Activation Functions?

An activation function is a function applied between layers of the network.
Since convolution is a linear function on pixel values, composing multiple
convolutions will only result in another linear function. The activation
function f is thus needed to introduce nonlinearity into the
regression model. Commonly used functions include:

• The Rectified Linear Unit, ReLU - the most widely used function, the
most efficient, and fairly accurate: f (x) = max(0, x)

• The softplus function, a smooth approximation of ReLU:
f (x) = ln(1 + ex)

• The logistic function, an improvement on the step function used in the
earliest neural networks: f (x) = 1/(1 + e−x)

All functions differ in efficiency of computation and accuracy of results
when used in a neural network.



The New Function
It would be nice to find a new function which

• smoothly approximates ReLU, like softplus, but

• together with its derivative, is more efficient to compute.

The derivative of the logistic function, for example, is
f ′(x) = f (x)(1− f (x)) and computes more quickly compared to
f ′(x) = ex/(1 + e−x)2 because f (x) has already been calculated.
This project proposes the following function, where C is an adjustable
value, to meet these requirements:

f (x) = x+
√
x2+C
2



Question/Hypothesis

How does the proposed function compare with the ReLU, softplus, and
logistic functions when used in a convolutional neural network to recog-
nize images of handwritten digits in the MNIST dataset?

Since its graph appears similar to softplus, the new function should
achieve a similar accuracy to softplus, and above that of ReLU and the
logistic function. In addition, since it contains no exponentials or loga-
rithms and is the solution to the differential equation:

f ′(x) =
f (x)

2f (x)− x

it should compute faster than either softplus or logistic.



Materials and Methods
The CNN was implemented in Python from scratch (!) without the aid of machine learning
libraries such as Tensorflow, Theano, or Neon. Instead, the forward- and backpropagation were
implemented using Numpy’s array functionality.

The instances of the CNN were trained on an Intel Core i5 with integrated GPU running Ubuntu.
Three CNNs were trained for each function: new (C=1), ReLU, softplus, and logistic, for 50 epochs
on the MNIST training dataset of 60000 images. After each epoch, the networks were evaluated
on all 10000 images of the testing dataset to produce a percent error rate. These error rates were
averaged across the trials, and the training time for each network was measured. Additionally,
three CNNs were later trained for the new function with C=0.1 and for C=0.01.

The layers of the CNN consist of the following tensors and operations:

(24, 24, 1)
conv/act−−−−→ (24, 24, 8)

pool−−→ (12, 12, 8)
conv/act−−−−→ (12, 12, 16)

pool−−→ (4, 4, 16)
fc/softmax−−−−−−→ (10)

The tuples of numbers represent the dimensions of the tensors containing the pixel values.

• “Conv/act” stands for a set of convolutions followed by the activation function.

• “Pool” stands for a pooling operation, scaling the image down to allow for distinguishing
larger-scale features.

• “FC/softmax” stands for a fully-connected layer plus the softmax function to obtain ten prob-
abilites, each representing the confidence of the CNN that the image depicts a particular digit.



.
Results: Accuracy

In the initial trials (C=1), the new function had an accuracy similar to ReLU (96%),
but both softplus and logistic were more accurate. For C=0.1 and C=0.01, though, the
new function surpassed ReLU in accuracy and closely matched softplus (97%), as
hypothesized. However, the logistic function (98%) remained the most accurate.



Results: Speed

The networks’ training times ranked as hypothesized from fastest to slowest: ReLU,
the proposed function, logistic, softplus. Despite the running times of the functions
alone spanning multiple orders of magnitude, the difference between networks is relatively
small because most of the training time is spent performing convolutions.





(
[1 2 1.5] ·

0.6 0.2
0.4 1
−2 0.1

) + [−0.1 0.5] = [−0.4 2.3] XW (1) + b(1) = z(2)

[f (−0.4) f (2.3)] = [0.6 0.09] f (z(2)) = a(2)(
[0.6 0.09] ·

[
0.5 0.2
2 1

])
+ [2 −1] = [2.21 −0.79] a(2)W (2) + b(2) = z(3)

[f (2.21) f (−0.79)] = [0.9 0.31] f (z(3)) = a(3)

∂J

∂z(3)
=

∂J

∂a(3)
◦ f ′(z(3))

∂J

∂a(2)
=

∂J

∂z(3)
·W (2)T

∂J

∂W (2)
= a(2)

T · ∂J

∂z(3)

∂J

∂z(2)
=

∂J

∂a(2)
◦ f ′(z(2))

∂J

∂W (1)
= XT · ∂J

∂z(2)

Equations for forward and backward propagation in the example network illustrated above



Conclusion

The proposed activation function, being more accurate than ReLU
and faster than logistic and softplus (for C=0.1 and C=0.01), has some
advantage over every function against which it was tested, making it po-
tentially useful for neural networks.

Discussion and Further Research

I propose to name this function the hyperbolic rectifier unit (or
HRU) because its graph is a hyperbola with asymptotes y = 0 and y = x.
In the future, the HRU could be tested with other values of C, within other
neural networks for other problems, and against other activation functions,
such as the arctangent, hyperbolic tangent, and exponential linear unit.
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